This question is based on the application of the pdf which was an earlier question of mine asked here Confusion regarding pdf of circularly symmetric complex gaussian rv
If $v \sim CN(0,2\sigma^2_v)$ is a circularly complex Gaussian random variable which acts as the measurement noise in this model $$y_n = A + v_n \tag{1} $$ where $y$ is the observation and $A$ is a scalar unknown value which needs to be estimated. I am having a slight confusion whether there will be a 2 in the denominator of Eq(3) and Eq(4) with the $\exp(.)$ term. Based on the answer in the link, there should be no sqrt term with $\pi$ in the denominator, if $v \sim CN(0,2\sigma^2_v)$. If $v \sim N(0,\sigma^2_v)$ then there is a sqrt term.
Can somebody please check if I have correctly written out the log-likelihood? I think I am missing a 2 in the denominator of $\exp[.]$ term in Eq(3) but I am not quite sure.
Thank you for your time and help.
$$P_y(y_1,y_2,...,y_N) = \prod_{n=1}^N\frac{1}{2\pi \sigma^2_v} \exp \bigg(\frac{-{({y_n-A})}^H ({y_n-A})}{2\sigma^2_v} \bigg) \tag{2}$$
taking log $$\ell = -N\ln(2\pi\sigma^2_v) - \frac{1}{\sigma^2_v} {\bigg[{[\sum_{n=1}^{N} {(y_n - A)}{(y_n - A)}^{\mathsf{H}} ]}\bigg]}. \tag{3}$$ $$ = -N\ln(2\pi\sigma^2_v)- \frac{1}{2 \sigma^2_v}{\bigg[ \sum_{n=1}^{N}y_n y_n^\mathsf{H} - 2 \sum_{n=1}^N y_n A\bigg]} - \frac{1}{2 \sigma^2_v}{\bigg[ \sum_{n=1}^N {AA}^\mathsf{H} ] \bigg]} \tag{4}$$
Answer
I looked this up on Wikipedia: A complex Gaussian random variable $V = \mathfrak{Re}(V)+j\mathfrak{Im}(V)$ is said to be zero mean circularly symmetric $\mathcal{CN}(0,\Gamma)$ if the random vector $[\mathfrak{Re}(V),\mathfrak{Im}(V)]$ is a Gaussian random vector with mean $[0,0]$ and covariance matrix $ \frac{1}{2}\begin{bmatrix} \mathfrak{Re}(\Gamma) & -\mathfrak{Im}(\Gamma) \\ \mathfrak{Im}(\Gamma) & \mathfrak{Re}(\Gamma) \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 2\sigma_v^2 & 0 \\ 0 & 2\sigma_v^2 \end{bmatrix} = \begin{bmatrix} \sigma_v^2 & 0 \\ 0 & \sigma_v^2 \end{bmatrix}. $
For your question, you need to know how to write the density function of each of the $Y_i$'s. Since $Y_i = A + V_i$, the random vector $[\mathfrak{Re}(Y_i),\mathfrak{Im}(Y_i)]$ is a 2D Gaussian vector distributed according to $\mathcal{N}\left(\begin{bmatrix} \mathfrak{Re}(A) \\ \mathfrak{Im}(A) \end{bmatrix},\begin{bmatrix} \sigma_v^2 & 0 \\ 0 & \sigma_v^2 \end{bmatrix}\right)$ i.e. the density function can be written as \begin{eqnarray} \frac{1}{\sigma_v\sqrt{2\pi}}\exp\left(-{\frac{(w-\mathfrak{Re}(A))^2}{2\sigma_v^2}}\right) &\cdot& \frac{1}{\sigma_v\sqrt{2\pi}}\exp\left(-{\frac{(x-\mathfrak{Im}(A))^2}{2\sigma_v^2}}\right)\\& = & \frac{1}{2\pi\sigma_v^2}\exp\left(-\frac{(w-\mathfrak{Re}(A))^2+(x-\mathfrak{Im}(A))^2}{2\sigma_v^2}\right) \\ &=& \frac{1}{2\pi\sigma_v^2} \exp\left(-\frac{(y_i-A)\overline{(y_i-A)}}{2\sigma_v^2}\right) \end{eqnarray} where $y_i=w+jx$ is a "placeholder" for the complex random variable $Y_i$ and the "overbar" denotes complex conjugate i.e. $\bar y=w-jx.$
Finally, we are ready to write the density function of the complex random vector $[Y_1,\ldots, Y_N]$. We note that due to the circular symmetry of each of the components, it is same as the density of the real valued Gaussian random vector $[\mathfrak{Re}(Y_1),\mathfrak{Im}(Y_1),\ldots, \mathfrak{Re}(Y_N),\mathfrak{Im}(Y_N)].$
The likelihood function can now be written as $$ p(Y_1,\ldots,Y_N)=\prod_{i=1}^N \frac{1}{2\pi\sigma_v^2} \exp\left(-\frac{(y_i-A)\overline{(y_i-A)}}{2\sigma_v^2}\right) $$ and the negative-log-likelihood becomes \begin{eqnarray} -\log p(Y_1,\ldots,Y_N)&=& N\log(2\pi\sigma_v^2) + \frac{1}{2\sigma_v^2} \sum_{i=1}^N (y_i-A)\overline{(y_i-A)} \\ &=& N\log(2\pi\sigma_v^2) + \frac{1}{2\sigma_v^2} \sum_{i=1}^N (y_i-A)\overline{(y_i-A)} \end{eqnarray}
No comments:
Post a Comment