I'm looking for books or resources that cover the following in detail:
implementing mathematical functions (e.g., logarithm, exponential, sine, cosine, inverse) in fixed point arithmetic for DSP purposes.
techniques like using lookup tables, Taylor series, etc.
I am fairly familiar with C programming and am more interested in the algorithms on how to go about implementing various mathematical functions in an efficient manner.
Answer
the general polynomial form is:
f(u)=N∑n=0 an un=a0+(a1+(a2+(a3+...(aN−2+(aN−1+aNu)u)u ...)u)u)u
the latter form is using Horner's method, which is highly recommended, especially if you're doing this in single-precision floating point.
then for a few specific functions:
square root:
f(x−1)≈√x1≤x≤2N=4a0=1.0a1=0.49959804148061a2=−0.12047308243453a3=0.04585425015501a4=−0.01076564682800
if 2≤x≤4, use the above to evaluate √x2 and multiply that result with √2 to get √x. as with log2(x), apply power of 2 scaling to scale the argument to the necessary range.
base 2 logarithm:
x⋅f(x−1)≈log2(x)1≤x≤2N=5a0=1.44254494359510a1=−0.7181452567504a2=0.45754919692582a3=−0.27790534462866a4=0.121797910687826a5=−0.02584144982967
base 2 exponential:
f(x)≈2x0≤x≤1N=4a0=1.0a1=0.69303212081966a2=0.24137976293709a3=0.05203236900844a4=0.01355574723481
sine:
x⋅f(x2)≈sin(π2x)−1≤x≤1N=4a0=1.57079632679490a1=−0.64596406188166a2=0.07969158490912a3=−0.00467687997706a4=0.00015303015470
cosine (use sine):
cos(πx)=1−2sin2(π2x)
tangent:
tan(x)=sin(x)cos(x)
inverse tangent:
xf(x2)≈arctan(x)−1≤x≤1N=4a0=1.0a1=0.33288950512027a2=−0.08467922817644a3=0.03252232640125a4=−0.00749305860992
arctan(x)=π2−arctan(1x)1≤x
arctan(x)=−π2−arctan(1x)x≤−1
inverse sine:
arcsin(x)=arctan(x√1−x2)
inverse cosine:
arccos(x)=π2−arcsin(x)=π2−arctan(x√1−x2)
No comments:
Post a Comment