Tuesday, November 6, 2018

computational chemistry - Why do post-Hartree-Fock methods fail to predict the direction of the dipole moment of carbon monoxide?


In carbon monoxide the dipole moment (negative to positive) points towards the oxygen, as I explained it in How can the dipole moment of carbon monoxide be rationalised by molecular orbital theory?


A calculation using density functional approximation, the level of theory is BP86/def2-QZVPP, yields the correct direction: \begin{align} \ce{{}^{\ominus}\!:C#O:^{\oplus}} && \text{Dipole:}~|\mathbf{q}|=0.19~\mathrm{D} && \text{Direction:}~\longrightarrow \end{align}



---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 0.000000 0.000000 -0.648987

2 8 0 0.000000 0.000000 0.486740
---------------------------------------------------------------------
[...]
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.1907 Tot= 0.1907

Using Møller-Plesset Perturbation Theory of second order, i.e. MP2/def2-QZVPP, we obtain \begin{align} \ce{{}^{\ominus}\!:C#O:^{\oplus}} && \text{Dipole:}~|\mathbf{q}|=0.30~\mathrm{D} && \text{Direction:}~\longleftarrow \end{align}



---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 0.000000 0.000000 -0.648450
2 8 0 0.000000 0.000000 0.486337
---------------------------------------------------------------------
[...]
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= -0.3002 Tot= 0.3002

There is no improvement going to other post-Hartree_Fock methods, as the following table indicates. A positive value means that the dipole is directed towards the carbon; the used basis set is in all cases def2-QZVPP. \begin{array}{lr} \text{Method} & \mathbf{q}(\overrightarrow{\ce{CO}})\\\hline \text{Experimental}^1 & 0.11\\\hline \text{HF} & -0.14\\\hline \text{MP2} & -0.30\\ \text{MP3} & -0.22\\ \text{MP4(SDQ)} & -0.27\\ \text{MP4(SDTQ)//MP4(SDQ)} & -0.27\\ \text{CCSD} & -0.25\\ \text{CCSD(T)//CCSD} & -0.25\\ \text{CISD} & -0.22\\ \text{QCISD} & -0.26\\ \hline \text{BP86} & 0.19\\ \text{PBE0} & 0.12\\ \text{M11} & 0.06\\ \text{B3LYP} & 0.10\\ \hline \text{B2PLYP} & -0.07\\ \hline \end{array}



This failure probably already starts with Hartree-Fock. Where does the deficiency lie in the HF description in this particular case? And why is this deficiency not corrected by post-HF methods? Even the double hybrid functional B2PLYP cannot predict the direction of the dipole moment correctly.





  1. According to Gernot Frenking, Christoph Loschen, Andreas Krapp, Stefan Fau, and Steven H. Strauss, J. Comp. Chem., 2007, 28 (1), 117-126. the value can be found in J. S. Muenter. J. Mol. Spectrosc. 1975, 55, 490. (I don't have access to that publication.)




Sample Input for Gaussian 09



#p MP2/def2QZVPP
scf(tight) opt(verytight,maxcycle=100)

symmetry(loose)
gfinput gfoldprint iop(6/7=3)

carbon monoxide

0 1
C 0.0 0.0 1.135
O 0.0 0.0 0.0



No comments:

Post a Comment

periodic trends - Comparing radii in lithium, beryllium, magnesium, aluminium and sodium ions

Apparently the of last four, $\ce{Mg^2+}$ is closest in radius to $\ce{Li+}$. Is this true, and if so, why would a whole larger shell ($\ce{...