Wednesday, November 21, 2018

periodic - How do I find the fundamental period of the given signal?


I am having a problem in finding the fundamental period of the signal $x(t)$ given below: \begin{align} x(t) &= 2\cos\left(\frac 45 \pi t\right)\sin^2\left(\frac{16}{3} t\right)\\ &= 2\cos\left(\frac 45 \pi t\right)\cdot \frac 12\left[1-\cos\left(\frac{32}{3}t\right)\right]\\ &= \cos\left(\frac 45 \pi t\right) - \cos\left(\frac 45 \pi t\right)\cos\left(\frac{32}{3} t\right)\\ & = \cos\left(\frac 45 \pi t\right)-\frac 12\bigg\{\cos\left[\left(\frac 45 \pi -\frac{32}{3}\right)t\right]+\cos\left[\left(\frac 45 \pi -\frac{32}{3}\right)t\right]\bigg\} \end{align}




No comments:

Post a Comment

periodic trends - Comparing radii in lithium, beryllium, magnesium, aluminium and sodium ions

Apparently the of last four, $\ce{Mg^2+}$ is closest in radius to $\ce{Li+}$. Is this true, and if so, why would a whole larger shell ($\ce{...